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Addressing Transient Errors in Passive Macromodels
of Distributed Transmission-Line Networks
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Abstract—Recently, several time-domain passive macromod-

eling algorithms were proposed for distributed transmission-line
networks. Most of them employ some kind of approximation in
the frequency domain to match the response up to a maximum
frequency of interest and the behavior after the highest frequency
is generally not considered. This can cause significant errors in
transient responses (especially in the early-time period). In order
to address this difficulty, we will present a new algorithm to
reduce high-frequency errors in time-domain macromodels, while
preserving passivity. The proposed algorithm is very useful in
eliminating spurious ripples in the flat delay portion of transient
responses of distributed transmission-line networks without
needing to increase the order of approximation.

Index Terms—Circuit simulation, distributed
high-speed interconnects, model-reduction,
boards, transient analysis, transmission lines.

networks,
printed circuit

produce unstable networks when connected to other stable, even
passive loads. This can lead to faulty transient simulation.

On the other hand, recently published passive macromodeling
schemes [7]-[10] guarantee the passivity of macromodels, and
lead to macromodels in terms of ordinary differential equations.
Most of these algorithms employ some kind of approximation
in the frequency-domain to match the impulse response up to a
maximum frequency of interesf,,.. ). However, the behavior
after fiuax IS generally not considered, which can lead to signif-
icant errors in the impulse transient response, especially in the
early-time period (spurious ripples) [11], [12]. This can affect
the accuracy of the transient response at all other time points
when the macromodel is included during the simulation of a
large network. Also, the above problem can be aggravated in the

presence of sharp rise times or with smaller capacitive loads. To
remove these ripples, the order of the approximation required
would be very high, making the macromodel inefficient.

HE ever-increasing quest for higher operating speeds,In order to address the above problem of faulty transient

miniature devices, and denser layouts has made th&ponse due to high-frequency errors, a new algorithm is
interconnect effects such as delay, crosstalk, ringing and digesented in this paper. The proposed algorithm provides a
tortion, the dominant factors limiting the overall performanceechanism to control the asymptotic behavior of high-fre-
of microelectronic/microwave systems. At higher frequencieguency impulse response while matching the response up
the length of the interconnect becomes a significant fraction®@f f,... accurately. This leads to significant reduction in
the operating wavelength, so conventional lumped-impedang®ors of transient responses. Also, it guarantees the passivity
models become inadequate and distributed transmission-lgfethe macromodel. The proposed algorithm achieves the
models become necessary [1]-[12]. However, simulation @bove objectives with macromodel orders comparable to the
distributed transmission lines in the presence of nonlineaies published in the literature. The macromodel is obtained
elements suffers from the mixed frequency/time difficultyanalytically, in terms of predetermined (stored) constants and
There are several techniques available in the literature ttge given per-unit length (PUL) line parameters. Numerical
address this problem. Broadly speaking, they can be classifigthmples are presented to demonstrate the validity, accuracy
into two categories. The first includes techniques based on #ed efficiency of the proposed method.
generalized method of characteristics (MC) [3]-[5]. The second
category is based on passive macromodeling of transmission
lines [7]-[10].

In general, MC extracts the line delay and a transfer-function

characterizing the frequency response of the line. An importaQt Transmission-Line Equations

advantage of the MC approach is that, since it extracts the line

delay explicitly, the corresponding transient responses genera");Z)istributed interconnects are described by a set of partial dif-

do not exhibit spurious ripples in the early-time region. HovJ—erentlal equations known as Telegrapher’s equations

ever, the MC can be CPU expensive in the presence of nonlinear

. INTRODUCTION

Il. REVIEW OF DISTRIBUTED-TRANSMISSION-LINE
MACROMODELING

elements and lossy lines. In addition, it does not guarantee the 3] . o .
passivity of macromodels. Passivity is an important property to @"(“"7 t) = — Ri(x,t) = _Laz("’“ t)
satisfy because macromodels that are stable but not passive can 0 9]
bt P —i(z,1) = - Go(z,1) = ~C (1) L)
T A
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vt\{hereR, L, G, andC € R¥*¥ are the PUL parameters of the
YFansmission linep(z,t), i(x,t) € RY represent the voltage
and current vectors as a function of positiomnd timet, and
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1 + 1 is the number of lines including the reference line. Equavhere the polynomial)(s) is strictly Hurwitz.If the above con-

tion (1) can be written in the Laplace domain as ditions are satisfied, then the rational matrix obtained by re-
placing the scalag with the matrixZ of (2) results in a passive
{ V(d,s) } 7 [V(O,s)} transmission-line macromodelext, knowing the coefficients
—I(d,s)| I1(0,s) q;, we can write the macromodel of the multiconductor trans-
7 { 0 —(R+ sL)d} @ mission-line as
—(G +sC)d 0

Qu —Qu][ Vo) ] [@u Qu][V(.s)
% (%013 &)

whereV (s) andI(s) are the terminal voltage and current vec- U1 9 T(d.s) O Qo [10:5)
tors of the transmission line amds the length of the line. Equa- \where

tion (2) does not have a direct representation in the time do- N
main, which makes it difficult to interface with nonlinear simu- Q,, = Z )
lators. In [7]-[10], passive macromodeling schemes have been H e 7
proposed to address the issue of mixed frequency/time simula- N
tion. These methods efficiently capture the frequency response Q. = Z G
between (0 and,,..); however, the algorithms are susceptible =

5+ (1)) ]
50 (1)@

to spurious early-time ripples due to the frequency behavior be- N 1
yond f.masx. This can affect the accuracy of the transient response Q. = Z ¢ [=(1 = (=1)")(ba) (’il)/zb]
at all other time points when the macromodels are included in i=0 2

large networks. In order to address the above problem, a new al- N
gorithm is presented which controls the asymptotic behavior of Qs = Z qi
the high-frequency response using the matrix-rational approxi- i=0
mation (MRA) algorithm [8] as an example. For this purpose, g4q

brief review of the MRA-based macromodeling is given in Sec-

tion 1I-B. However, note that the principles stated in this paper a=(R+sL)d b= (G+ sC)d. @)
are general in nature and they can also be included in other ra- )

tional-function-based passive macromodeling algorithms avanupsequently, the form of the resulting parameters can be

01+ (-1)(b) ©

able in the literature, with appropriate modifications. written as
Tos)| _[Yin Y| [ Vi
B. Review of MRA-Based Passive Macromodels I, Yoo Yoo |V

The exponential matrix? in (2) can be expressed with a| Y11 Y12 | _ _ w —Hy H, H,
. : L =V, + ¥y = +
matrix rational approximation as Yor Yo -H, H,

1
H, :E[Q12]71Q11
H, :%[Q22]_1Q21~ (8)

The macromodels, such as the one described above and other

N ; passive macromodeling algorithms in the literature [7]-[10], ef-
Qn(Z) = Z %z @) ficiently capture the frequency response between (Ofand).

=0 However, these macromodels may lead to significant high-fre-

whereP 1, (Z) andQ y (Z) are polynomial matrices. The aboveiuency errors, gausing faulty_ early—t.ime responses. The reason

approximation is formulated analytically in terms of predeterr these errors is explained in Section Iil.

mined constants (i.eq; andp;) and PUL parameters. The fol-

lowing theorem was used in [8] to show that faf = N, pas- I1l. CONCEPTSPERTINENT TO THE PROPOSEDALGORITHM

sive macromodels can be obtained. A. Concept

Theorem 1: Let the rational approximation ef be

Pu(Z)e% ~Qy(Z)

M
Py (Z) = ZpiZ”
i=0

For the early-time response to be reasonably flat (corre-
sponding to the flat delay portion of the transmission-line

N
3 gist response), it is desirable to have (as many as possible) initial
e~ Q(s) _ =0 — Ev(Q) +0dd(Q) derivatives of the impulse time response to be equal to zero.
Q(—s) % i Ev(Q) — 0dd(Q) Note that the early-time impulse response is mainly influenced
iz e by the following relationship:
N
Ev(Q) = a B(l + <—1>i>sﬂ h(0T) = lim sHyn(s) ©)

wheres is the Laplace operatof];n(s) represents the fre-
0dd(Q) = Z gi [1(1 _ (_1)i)si:| (4) duency-domain rational function/ is the numerator polyno-
4 2 mial order,N is the denominator polynomial order, ah(h™)
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represents the early-time responaeoind¢ = 0). Next, as- arises mainly due to Theoremvihich strictly requires the ra-
suming thath(0) = 0, the first derivative of the impulse re-tional form of (N)/(N) for the approximation of exponential
sponse becomes matrix. The above conclusion is true even for other types of pas-
sive macromodeling techniques in the literature [7]-[10], where
the order difference between the denominator and numerator
(i.e., N—M) ranges between1 to 1. Obviously, transfer admit-
tances of this form do not satisfy the conditions set by (9)—(11)
(i.e., initial few derivatives of these transfer admittances are not
(1) (b — T P2 e.q.ual to zero). Hence., these macromodels are susceptib[e to §ig—
h (07) = Sll,njos Harn (s)- (1) nificant errors in the impulse transient response, especially in

the early time region.
Observing (9)—(11), one can note that, to obtain flat response, y g

d =0 h ible initial derivati A further investigation of the rational form af parameters
around = (|.e:, to have as many as possibie initial derivatlves (8) tells us why it is difficult to control the high-frequency re-
of the impulse time response to be equal to zero), the transfg

) X . ﬁ'onse such that it satisfies the conditions required by (9)—(11)
admittances represented By, v (s) must satisfyv > M. This in order to produce a reasonably flat delay. For example, con-

can be further illustrated using a numerical example as fOHOV\é‘ﬁder the case whel is even (without loss of generality) for
For example, let the transfer-admittarice of a transmission a single conductor (with ground reference) transmission-line

line be given by system. The corresponding rational function of theparam-

h(l)(0+) = lim S2H]\,[N(S). (10)

55— 00

Similarly, if the firstp derivatives are zero, then thé&+1 (0+)
can be expressed as

1 eters (8) can be re-arranged as
Y12 = st +7s3 4+ 1752 +17s+ 6 (12)
Y11 _ Q11Q22 + Q12Q21
theny;2(0%) = 0, yg)(oﬂ =0, andyg) (07) = 0. Since Yoo 2Q12Q22

transmission line found in this case is reasonably approximated pn(ab)™ + 32 (i + pi)(ab)’

the first few time derivatives of (12) are zero, the delay of the N-1
as a flat response. However, if the order of the numerator is = =0

much less than the order of denominator, then the rational ap- a (Nzl (pi(ab)i)
proximation has fewer degrees of freedom to capture the fre- i=0
guency response. A practical compromise is to have the numer- Y10 } _=@11Q22 + Q120
ator be a few orders less than the denominator. This enables the Yo1 2Q12Q22
transfer-admittance to have enough degrees of freedom, while N Nt :
ensuring that the first few derivatives are zero. —pn(ab)™ + ;0 (=ni + pi)(ab) 1)
B. Limitations of Current Passive Macromodeling Algorithms a (1\21 %(ab)z)
=0

The current passive macromodeling algorithms, such as the

one described by (5)-(8), efficiently capture the frequengyhere the predetermined coefficients p;, andy; in (14) are

response between (0 arfg.). However, these macromodelspbtained by the scalar approximation of (4) using the following
can lead to significant high-frequency errors, causing faulgg|ations:

early-time response. The reason for these errors can be ex-

plained by noting the final rational forms of individual entries N 0
in the admittance matrix. For the sake of simplicity and Ev(Q)Ev(Q) = Z His
without loss of generality, assume that the PUL parameters are 1;0

scalars. For ordeN (denoted a$)(NV)), the orders of passive
rational-form ofY” parameters (8) are given by

04d(Q)0dd(Q) = pis®
1=0

v. v o) O(N) O(N-1) O(N-1) N-1
11 12 O(N-1 O(N-1 O(N O(N _ 2141
[Ym YQJ j[ o) o) [+ o o(J(v—%)] 20dd(Q)EV(Q) =} wis®. (15)
O(V-1) O(N-D) oy oM™ i=0
(13a)

Noticing (14), we can infer that, by appropriately choosing
the values fop; andu; such thaj,; = p; (forexampleuny_1 =
pN—1), the transfer admittances of (14) could be forced to have
fewer polynomial terms on the numerator. However, since (14)
does not have ay coefficient, it is very difficult to remove the

(13b) highest order polynomial term. This implies that it is not pos-
sible to reduce the order of the numerator less tNawithout
(13¢c) violating passivity conditions. In order to address these diffi-
culties, we present a new algorithm in Section IV, which also
As can be seen, the transfer admittances suth.astc., have provides a mechanism to control the asymptotic behavior of the
the rational form with order®(2N)/O(2N — 1). Such a form high-frequency impulse response of the transfer admittance.

Lt O(2N) O(2N)
o@n-1) | |0@N) 0@N)
[0(21\'—2) O(2N—2)}}
+ .
O(2N-2) O(2N-2)

O(2N) O(2N)
N [O(?N—l) O(QN—I)]

O(2N) O(2N)
O(2N-1)

O(2N-1)
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IV. DEVELOPMENT OF THE PROPOSED Subsequently, the form of the resultiligparameters of (8) can
MACROMODELING ALGORITHM be rewritten as

The objective of the proposed algorithm is to provide a mech- Y Yoo U 4T
anism to control the macromodel impulse response beygnd Y91 Yool 1 2
S0 as to minimize early-time ripples while preserving the accu- H, -H, H, H,
racy and passivity of the macromodel. For this purpose, the pro- = [—Hw H, } + [IL EIJ

posed algorithm uses two different orders of approximation of

1
the scalar exponential in (4)N)/(N) and(N + 1)/(N + 1) H, =§[Q12]_1Q11
that satisfy Theorem 1. Consider a particular ordderif N is . 1~ -
even (without loss of generality), then the approximation given H, =§[Q22] Q- (21)

by (4) can be expressed as

N A. Single Transmission-Line Case

Q(s) > gis' Consider the case of a single conductor (with ground refer-
e’ — = N’ZO . (16) ence) transmission-line system. Using (21), the rational func-
Q(=5) S qi(—s)i tion of Y -parameters can be expressed as
1=0
N .
Simil;rlyé, thetot(;1er approximation corresponding\fe-1 order Y1, } _Q11Q22 + Q1200 B ;}(Ni + pi)(ab)
can be denoted as N = = = N1
o 22 2Q12Q22 a < ZO @l(ab)7>
It =
~ E q~i81 N .
5~y Q(s) i=0 ~ ~ — i + pi)(ab)’
e Q(—s) - Nil ( ) (17) Y12 } C —0Q11Q22 + Q12Q21 Z:o( )(ab) 22)
gi(—s)* Yor [~ 3 - N_1 '
P 21 2Q12Q22 “ ( ) Lpi(ab)’b>
i=0

Using the above two approximations, the rational approximas . - ’ .
tion of (5) be expressed as where the predetermined coefficients p;, andyp; in (22) are

obtained using the relations

V(d,s) ] _ R ‘
(@ —Qi] [—I(d,s)} ~[Qu Q2] Ev(Q)Ev(Q) = Zuiszl
V(0,5) v
X [I(o,s)] (18)

0dd(@)0dd(Q) =Y pis*
=0

-G ol | V0 | 10 @)

B. Controlling the Asymptotic Behavior of the High-Frequency
where the coefficients from (16) are used to approximate (18)pulse Response

and the coefficients from (17) are used to approximate (19). osymptotic behavior of the high-frequency impulse response
Note that the (18) and (19) are self consistent and do not violglg, pe controlled using the following mechanism. In formula-
the passivity conditions set by Theorem 1 [8]. The polynomighn, (22), the order of the numerator of the transfer-admittance
matrices@; 1, Q1,, @21, and@,, are now defined as can be reduced by appropriately choosing the valueg;fand

wi. For example, while computing the predetermined constants,
imposing the constraint

N-1
20dd(Q)EV(Q) = Y @is*H. (23)
1=0

Qu = Z @ B(l + <—1>i><ab>i/1

LN = PN (24)
N
1 i i— he highest order polynomial term of the
_ = (1= (=1)")(ab)C 1)/2} removes the hig poly
@12 ;q [2( (=1)")(ab) ¢ transfer-admittance in (22) [i.e.denominator order —
Nl numerator order = 1 in (9)]. Similarly, imposing the
Q=3 i (1 - (-1)ba) constraints
=0 UN = PN; HBN-1 = PN-1 (25)
N+1 . .
Q,, = Gi [_ 14 (=1)")(ba 71/2} . (20) leads to the removal of two highest order polynomial terms
> ; 2( (=1)")(ba) of the numerator of the transfer admittance in (22) [i.e.,
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denominator order — numerator order = 3 in (9)]. This whereQ andQ are described by (16) and (17). Next, from (21),
makes the transfer admittance to satisfy the conditions setthg transfer admittances are given by

(9)—(11). In other words, if a total number bfsuch constraints ~

are used, then it ensures that the function 2inet 3 derivatives Yio =Yo1 = —Hy + H,. (30)

of the transfer admittance are set to zero. For example=if2,

then the order of transfer admittange given by (22) is Hence, while computing the predetermined constants, if we im-

pose the condition

N—-2 i
v > (—pi +pi) [(R+ sL)(G + sC)d?] KN = TN41 (31)
12 | _ i=0
Yo1 } o N=1 o1é then it leads to the cancellation of the highest order polynomial
(B + sL)d (go @i [(R+sL)(G + sC)d?] ) term of the numerator of the transfer admittance of (22) [note

that the condition set by (31) is also equivalent to settirg—

O(2N —4
( ) (26) pn as described by (24)]. Proceeding further, if we also make

“0@N 1)

In this case, using (9)—(11), we will havg,(0T) = 0 and AN =Tt andey =Ty (32)

(0) _ ; . . . .
y1z (07) = 0. It should be noted that if the number of conyhen jt leads to the cancellation of the two highest polynomial
straints used in (25) is many and is comparable to the ordgfms, since the constraints of (32) are equivalent to the ones
of approximation, then the macromodel has fewer degreesgh by (24) (ixy = px andun—1 = py—1). If additional con-
freedom to capture the frequency response. To obtain accuigf@ints of the type (32) are included during the computation of
macromodels, very few constraints should be used. For the gxadetermined constants, then the order of the numerator of the
amples provided in this paper, only one or two constraints Wegg nsfer admittance can be reduced even further.
used, which provided significant improvement in the time-do- Using the similar approach discussed above, for the case of

main response. coupled lines, the submatrices of (21) can be expressed as
C. Extension to Multiconductor Transmission Lines H,, =xxb
-1
Extension of the proposed algorithm to the case of multicon- + (knra+ ( c o (b + (ma)_l)ﬂ)—l
ductor transmission lines can be explained as follows. Consider B

the Y-parameter terms of (21) for the case of single transmis- g7 =7n41b

asymptotic behavior of the transfer admittance. Note that the
important advantage here, in the multiconductor admittance ap-

sion line with ground reference. The submatri¢és and H, 1\ !
can be expressed in terms of continued fraction expansion as + (mra + ( - (TQG, + (le)_1)7 ) ) . (33)
Ho —wnh 1 Next, imposing the constraints similar to (31) and (32) while
w =KND + 1 . . .
KN-1G + P computing the predetermined constants will help to control the

K1a proximation given by (33), is that the predetermined coefficients
=7y s1b+ — 1 1 27) k; andr; are obtained by the scalar approximation of (4).
N TN-1b+ - D. Computation of Predetermined Coefficients
e This section describes the formulation of the minimax ob-
T1b jective function [8] for predetermining the coefficients of (16)

. and (17). The method imposes additional constraints to reduce
wherea = R + sL, b = G + sC. The coefficientss and ¢ order of the numerator of transfer-admittance. The minimax
T are the predetermined constants and are obtained us'”gcmfective function can be obtained by expressingAfta and

continued-fraction representation of (N + 1)th-order approximations given by (16) and (17) in terms
of product of second-order factors as
E 1
QOZEIC(Qé) =hNs KN 184+ — L (28) N/2
N-t KN—28+--- [T (s* + g1,i5 + 90,i)
i s Q(S) _ =1 (34)
- T Q=) T
2 _ . .
K18 (52 — g1,i5 + 90.i)
~ 1=1
0dd(Q) 1
- =T s+ 29 N/2
2Bv(Q) 1 rnas+—L— (29) 5 (s + hoo) I (5% + h1is + ho,i)
TN—28+ " s Q(S) _ i=1 35
: C T 0= E -

(=s+hoo) II(s2—hiis+ho,)

T1S i=1
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Equatior?s_ (34)and (_35) satisfy the f_orm of (4), whichis requirer  1-6—=— Proposed (31 poles). ' ' .
for passivity. Imposing the constraints that;, g1, ko, and - - - PRIMA (50 poles)
his > 0 for all values ofi ensures that the Hurwitz conditions
of Theorem 1 are satisfied. Replacing= jw, the minimax 1ok
objective function can be written as

) 1
: 3
max (Wl(w) el — Q(]w) io.s F
[0.max] Q(—jw) 3
, (i 20.6 .
+Wa(w) |e?¥ — M ) is minimum  (36)
Q(—jw) 0.4 ]

such thatyo ;, g1.:, hos, @andhy; > 0 for all values ofi. The 0.2+
variables; (w), Ws(w) are the weight functions at the angular
frequencyw, wherew ranges frond < w < wyax = 27 fmax- % 05 1 15 2 25 3 a5 4 a5
Imposing the following additional constraints ensures that th Frequency (GHz)

early-time ripples in transient responses are minimized

Fig. 1. Frequency response (Example 1).

kN — TN+1 =0 (21) are real values; therefore, the first condition of the passivity
Ky—_1 — 7N =0 definition is always satisfied. The task that remains is to show
(37) thattheY -parameter matrix is positive real.
In [8], it was shown that if the conditions of Theorem 1 are
where thes's and ther's are defined by (28) and (29) and carsatisfied, then the matricak; and ¥ of (8) are both positive
be expressed in terms of tyés and’s of (34) and (35). The real. The rational functiodl., is formulated using the predeter-
number of constraints used in (37) will depend on the ord&ined coefficients of (20). Since itis assumed that (16) satisfies
of the approximation. For low orders, usually one constraint {§€ Hurwitz conditions of Theorem 1, it can be shown tirat
needed. For higher order approximations, additional constraifftg0sitive real, as demonstrated in [8]. Similarly, the rational
may be required to control the asymptotic behavior of the higfnction H, is formulated by the predetermined coefficients of
frequency impulse response. It should be pointed out that if thle/)- Since itis assumed that (17) also satisfies the Hurwitz con-
number of constraints used in (37) is comparab¥ tithe order ditions of Theorem 1, it can be shown thii is also positive
of approximation), then the macromodel becomes inefficient f§al- The summation of two positive real matrices results in a
capturing the frequency response, since it has less degreeB@stitive real matrix which proves that the new macromodel is
freedom. To obtain accurate macromodels, very few constraiR&SSIVe.
should be used. For the examples provided in this paper, only
one or two constraints were used, which provided significant V. COMPUTATIONAL RESULTS

improvement in the time-domain response. A. Example 1: Long Lossy Transmission Line
It should be emphasized that the minimax optimization is per-

formed on SCALAR functions of and is independent of the network is analyzed with PRIMA [7] and the proposed algo-

number of coupled lines and the PUL parametdise results ri%]'n. The near end is connected to a voltage source through a
lre

obtained are then stored and the macromodel can be obtai . . . ) .
analytically in terms of the predetermined coefficients and PLS_h sistor and the far end is terminated with a 5B@esistor.
e lineis 40-cm long with PUL parametersi®f= 1.93 Q2 /cm,

parameters. L = 297 nHlcm,G = 79 nS/cm, andC’ = 1.61 pF/cm.
The frequency response at the far end of the transmission-line
(Vout) is givenin Fig. 1. Both approaches match the “original re-
Passivity is an important property to satisfy because maciponse” (obtained by directly solving Telegrapher’s equations)
models that are stable, but not passive, can produce unstable ngto 2.5 GHz, accurately, however, the high-frequency behavior
works when connected to other passive loads. This leads to speyond the matched frequency of 2.5 GHz is significantly dif-
rious oscillations in simulation results. A linear n-port networkerent. Note that the proposed macromodel contains only 31
with an admittance matriX (s) is said to be passive, if and onlypoles, whereas the PRIMA macromodel contains 50 poles (an
if[13]: 1) Y(s*) = Y*(s) for all s, wherex is the complex con- equivalent 32-pole PRIMA macromodel matches the original
jugate operator and J(s) is a positive real matrix. That is theresponse up to 1.6 GHz only). The transient response corre-
productz*![Y*(s*) 4+ Y (s)]z > 0 for all possible values of sponding to PRIMA macromodel is given in Fig. 2. (The input
satisfyingRe(s) > 0 and for any arbitrary value of. is a pulse with a 0.35-ns rise/fall time and 1-ns pulsewidth; the
The first condition implies that the coefficients of the rationdhbel “IFFT” refers to inverse FFT of “original response” multi-
function matrix generated by the proposed macromodel mustfdeed by the input frequency spectrum). The flat delay portion of
real. The second condition implies ti#fs) must be a positive the response from PRIMA suffers from spurious ripples. Fig. 3
real matrix for allRe(s) > 0. The coefficients generated bygives the transient response of the proposed macromodel, and

In this example, a long lossy distributed transmission-line

E. Preserving Passivity
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| --- IFFT

°
N

— PRIMA (50 poles)

o o
o o

Vout (Volts)
o
H

0.3
0.2
0.1
0
0 1 2 3 4 5
Time (ns)
Fig. 2. Time response (IFFT versus PRIMA).
0.8 T : . , .
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Fig. 4. Lossy coupled transm

it can be noticed that the spurious ripples in the flat-delay po§_o_o1
tion are significantly minimized. For this example, the predey
termined coefficients of the proposed algorithm were obtaine™

L,
I

ission-line network (Example 2).

using two constraints ([i.esy = Ty+1, kyv—1 = 7iv IN (37)].

B. Example 2: Lossy Coupled Transmission Line

A network with two lossy coupled transmission lines with fre-
quency-dependent parameters is considered (Fig. 4). The len
of the transmission-line network is 0.5 cm and the PUL paran

TABLE |
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PUL PARAMETERS OFEXAMPLE 2

Freq(GHz) | Ryj(Q/cm) | Ry5(Q/cm) | Ryp(Q/em) | Ly (nH/em) | Lyy(nH/em) | Ljy(nH/cm)
0 54.980 333.700 0 14.024 14.1697 11.186
1.0e-3 56.440 335.550 1.4094 14.024 14.1697 11.186
3.3e-3 56.442 335.550 1.4130 14.023 14.1697 11.186
6.6e-3 56.447 335.556 1.4220 14.020 14.1607 11.178
1.0e-2 56.460 335.570 1.4320 14.000 14.1530 11.167
3.3e-2 56.677 335.785 1.4408 13.840 14.0030 11.012
6.6e-2 57.326 336.430 2.0620 13.365 13.5740 10.557
0.1 58.260 337.360 2.9540 12.710 12.9820 9.930
0.3 63.800 342.875 8.2570 9.3000 9.9040 6.676
0.66 68.337 347.375 12.560 7.1279 7.9456 4.603
1.0 70.375 349.380 14.454 6.5050 7.3840 4.009
35 77.443 356.416 20.320 5.6750 6.6450 3.226
6.6 84.188 363.250 24.549 5.5130 6.4960 3.087
10.0 92.682 371.725 29.190 5.4160 6.4090 3.018
Rj=Ry; Ly,=Ly;
C = 1.79926 0.06759 pF/cm G=19 0 S/em
0.06759 2.14866 00
0.04 T T T T T
— MRA (Pade Order 6)
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R 0
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Fig. 5. Time response (IFFT versus MRA) (Example 2).
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Red

eters are described in Table I. The time-domain responses cor-
responding to an input step of 1 V and rise time of 0.07 ns &ity. 6. Time response (IFFT versus proposed) (Example 2).
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Fig. 8. Time-domain response at node V1 (Example 3). (b)

Fig. 9. Time-domain response at node V4 (victim line) (Example 3).

the victim node V4, using the MRA passive macromodel [8
and the proposed algorithm, are given in Figs. 5 and 6, resp
tively. As is seen, while matching the response accurately, theln this example, a relatively large interconnect system
proposed algorithm minimized the early-time spurious ripplegith several multiconductor transmission lines are considered
considerably. For this example, the predetermined coefficiertflsg. 7). Here, nine-coupled-transmission-line subnetworks
of the proposed algorithm were obtained using two constrairitave a length of 2.5 cm and the corresponding PUL parameters
[i.e., 6y = Tv+1, kyv_1 = 7v In (37)]. are as shown at the top of the following page.

_Example 3: Multiconductor Transmission-Line Network
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r5.04 0.182 0315 0.057 0.315 0.182 0.315 0.057 0.3157

0.182 5.04 0.315 0.182 0 0 0 0 0.315
0.315 0.315 5.04 0.315 0.182 0 0.057 0 0.182
0.057 0.182 0.315 5.04 0 0 0 0 0
L= 1{0.315 0 0.182 0 5.04 0315 0.182 0 0 nH/cm
0.182 0 0 0.315 5.04 0.315 0.182 0

0.057 0 0 0 0.182 0.315 5.04 0
L0.315 0.315 0.182 0 0 0.182 0 5.04 |

0

0.315 0 0.057 0 0.182 0.315 5.04 0.315 0.182
0
0

r 187.6 —-0.385 —2.23 —-0.0046 —-2.23 —-0.385 —2.23 —-0.0046 —2.23 7
—0.385 187.6  —2.23 —0.385 0 0 0 0 —2.23
—2.23 —2.23 187.6 —-2.23 —0.385 0 —0.0046 0 —0.385
—0.0046 —-0.385 —2.23 187.6 0 0 0 0 0
C= —2.23 0 —0.385 0 1876 —2.23 —0.385 0 0 pF/m
—0.385 0 0 0 —2.23 187.6  —2.23 —0.385 0
—2.23 0 —0.0046 0 —0.385 —2.23 187.6 —2.23 —0.385
—0.0046 0 0 0 0 —-0.385  —2.23 187.6 0
L —2.23 —2.23 —0.385 0 0 0 —0.385 0 187.6 ]
TABLE I transient responses. It is to be noted that the principles stated

CPU (DMPARISON FOREXAMPLE 3 in this paper are general in nature and can be included in other

Total number | CPU time (SPARC ratpnal-fgnchon.-based passive mac_:romodel_lr_lg _algorlthms
Algorithm of lumped Ultra 5-10) available in the literature, with appropriate modifications.
sections (seconds)
Conventional Lumped 1606 470 ACKNOWLEDGMENT
Proposed 221 76 The authors acknowledge I. M. Elfadel and A. E. Ruehli of

IBM T. J. Watson Research Center, Yorktown Heights, NY,

and H.-M. Huang of IBM Microelectronics Division, Hopewell

The  two-coupled-transmission-line  subnetworks have gynciion, NY, for several useful technical discussions and for
length of 0.4 cm and their PUL parameters are the same Fdviding the test examples.

that described in example 2 (Table 1). The transient responses
corresponding to an input pulsewidth of 0.8 ns, a rise/fall time
of 0.1 ns, and a period of 2 ns are shown in Figs. 8 and 9.

Table Il compares the total number of segments of the entirem C. R. Paul Analysis of Multiconductor Transmission LinesNew York:
Wiley, 1994.

network and the CPU time for the proposed and conventionalz] r. Achar and M. Nakhla, “Simulation of high speed interconnects,”
lumped model. For their respective orders, both the proposed Proc. IEEE vol. 89, pp. 693728, May 2001.

; ; i [ i [3] F. H.BraninJr., “Transient analysis of lossless transmission lif&asg.
and conventional lumped model give similar time-domain IEEE. vol. 55, pp. 20122013, Nov, 1967,

responses. However, the proposed method is about six timegy A J. Gruodis and C. S. Chang, “Coupled lossy transmission line char-
faster. In addition, the proposed method is able to achieve acterization and simulation]BM J. Res. Developvol. 25, pp. 25-41,

_ Jan. 1981.
better accuracy than the MRA macromodel [8] for equal Order[S] F. Y. Chang, “The generalized method of characteristics for wave-form

approximations (see the comparison in Figs. 8 and 9). The = (ejaxation analysis of coupled transmission line$ZEE Trans.
accuracy improvement of the proposed method is especially = Microwave Theory Techvol. 37, pp. 2028-2038, Dec. 1989.

; ; ; ] S. Linand E. S. KuhThe Complete Multimedia Book Series on Signal
noticeable for weak signals such as the transient response[§ Integrity (High-Speed Circuit and Interconnect Analysispttawa,

of the ViCti.m line at f“?de V4 (Fig. 9). For this example, the ON, Canada: OMNIZ Global Knowledge Corporation, 2002. [Online]
predetermined coefficients of the proposed algorithm were  Available: http:/www.omniz.com.
i i i ; _ _ [7] A.Odabasioglu, M. Celik, and L. T. Pilleggi, “PRIMA: Passive reduced-
.Obtamed using one constraints [l.ey = Tv41, iv-1 = 7N order interconnect macromodeling algorithtEEE Trans. Computer-
in (37)]. Aided Designvol. 17, pp. 645-654, Aug. 1998.
[8] A.Dounavis, R. Achar, and M. Nakhla, “Passive macromodels for dis-
tributed high-speed networkslEEE Trans. Microwave Theory Tech.
V1. CONCLUSIONS vol. 11, pp. 1686-1696, Oct. 2001.

In this paper, a new algorithm is presented for accuratel® Q- Yu, J. M. L. Wang, and E. S. Kuh, "Passive multipoint moment

. deli f distributed t . l t matching model order reduction algorithm on multiport distributed
passivé macromodeling of distributed transmission-liine net- interconnect networks,IEEE Trans. Circuits Syst., Ivol. 46, pp.

works. The algorithm provides a mechanism to control the  140-160, Jan. 1999.

asymptotic behavior of the high-frequency impulse responsé:'LO] A. Capgellaris, S. Pashg, J. Prince, and M. Celi_k, “A new discrete tin"_le-
. . . domain model for passive model order reduction and macromodeling

while matching the response up thn.« accurately. This of high-speed interconnectiondEEE Trans. Comp. Packag. Technol.

results in significant reduction in early-time spurious ripples in  vol. 22, pp. 356-364, Aug. 1999.
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